
© Copyright 2001-2008 Stephen M. Watt

Interpreters and Transformers

CS 4447 / 9545 – Stephen M. Watt

University of Western Ontario



CS4447

Outline

• Compilers and Interpreters

• Transformers

• Anatomy of a Compiler

• A notation for Interpreters

• A notation for Transformers

• Cross-Compilation and Boot-strapping



CS4447

Compilers and Interpreters
• Compilers and Interpreters are often portrayed as two alternatives to 

language implementation.    This is a false dichotomy!

• A more accurate view is:
– An “interpreter” takes some representation of a program and executes it.
– A “transformer” takes some representation of a program and creates an 

equivalent program.

• An interpreter may be implemented in software, hardware, or some
combination.

• A transformer may take a representation of the program in one language 
and produce a representation in another. This is a “translator.”

• A translator may do sophisticated whole-program analysis and produce code 
in a lower-level language. This a “compiler.”

• A translator may use the same language for its input and output, but improve 
the efficiency of the code. This is an “optimizer.”



CS4447

Interpreters

• Perform localized change of program representation

• Execute program as represented

• View program as a request for services

• E.g. Byte-code interpreter in JVM

• E.g. PowerPC instruction interpreter in hardware



CS4447

Transformers

• Take program as input, produce equivalent program as output.

• Can perform global “program-as-a-whole” analysis, translation 
and reorganization.

• Translators, e.g.

Modula-3 → C

Macsyma → Lisp

Fortran → i686

• Optimizers

• Compilers, typically translators + optimizes



CS4447

Compilation Phases – Simplified

• Lexical Analysis

• Syntactic Analysis

• Semantic Analysis

• Intermediate code generation

• Intermediate code improvement

• Machine-specific code generation

• Machine-specific code improvement



CS4447

A Notation for Interpreters

• We use the following diagram as the notation for an interpreter:

“H” is the language being interpreted.
“X” is the language in which the interpreter is implemented
(i.e. the language of it as a program)



CS4447

A Notation for Interpreters (cont’d)

• A Scheme interpreter written in Java and compiled to JVM 
running on an IBM mainframe can be seen as a composition of 
four interpreters, some in software, some in hardware.



CS4447

A Notation for Transformers

• We use the following diagram as the notation for a transformer:

“I” is the language of the input program
“O” is the language of the output program
“X” is the language in which the transformer is implemented

• E.g. A Java compiler for a PC



CS4447

A Notation for Transformers (cont’d)

• E.g. A C compiler

• The steps are
– C preprocessor: takes C source code to C source code, handling 

#include, etc.

– Parser: takes C source code to parse trees (PT)

– Semantic analysis: takes parse trees to semantic trees (ST),
e.g. with type info.

– Intermediate code generation: Takes semantic trees to a machine-
independent intermediate code (IC)

– Intermediate code optimization (note shown): takes IC to IC

– Target machine code generation: takes IC to target machine code (MC)

– Target machine code optimization (not shown): takes MC to MC



CS4447

Combinations

• Sometimes a program can both translate and interpret.

• We see this
– in integrated development environments (IDEs)

– when dynamic compilation is used

– in optimizers



CS4447

Cross-Compilation and Boot-strapping
• Suppose we have a compiler for language A running on some machine X 

and we wish to construct a compiler which runs on machine Z.



CS4447

Cross-comp. and Boot-strapping (cont’d)

• Step 1 Have the source code (1) and executable program (2) for a compiler for 
language “A” on the machine “X”

Note that the compiler is composed of many phases, the first group produce a 
machine-independent form of the compiled program in an intermediate language (IL), 
and the second group takes this IL program to machine-specific code for “X”.
We group these as (1f)+(1b) and (2f) + (2b).

• Step 2 Write an IL → Z code generator (3b) in source language A.
This is the main job. It might be accomplished by adapting the program (1b).

Compile the program (3b) on machine X using compiler (2) to get the executable 
program (4b).

• Step 3 Now (3b) together with (1f) form the source for a full compiler for machine Z.
And (2f) + (4b) provide an executable compiler running on machine X to produce 
code for machine Z.

We now have a “cross-compiler” for machine Z running on X.

• Step 4 Use the cross-compiler (2f)+(4b) to recompile the source programs (1f)+(3b) 
to get the executable programs (5f)+(5b) which run on machine Z.
We are done!


